直角三角形30度角所对的边等于斜边的一半,怎么回事
的有关信息介绍如下:证法1:延长BA到D,使AD=AB,连接CD。∵∠BAC=90°,AB=AD,∴AC垂直平分BD,∴BC=CD(垂直平分线上的点到线段两端距离相等),∵∠B=90°-∠ACB=90°-30°=60°,∴△BCD是等边三角形(有一个角是60°的等腰三角形是等边三角形),∴BD=BC,∵AB=AD=1/2BD,∴AB=1/2BC。
证法2:取BC的中点D,连接AD。∵∠BAC=90°,∴AD=1/2BC=BD(直角三角形斜边中线等于斜边的一半),∵∠B=90°-∠ACB=90°-30°=60°,∴△ABD是等边三角形(有一个角是60°的等腰三角形是等边三角形),∴AB=BD,∴AB=1/2BC。
直角三角形的性质 :(1)直角三角形两个锐角互余; (2)直角三角形斜边上的中线等于斜边的一半; (3)在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半; (4)在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°; (5)在直角三角形中,两条直角边a、b的平方和等于斜边c的平方,即a2+b2=c2.(勾股定理) ;(6)(h为斜边上的高),外接圆半径斜边上的中线,内切圆半径。